Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

نویسندگان

  • Nikolas Nikolaidis
  • Nicole Doran
  • Daniel J Cosgrove
چکیده

Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of and Horizontal Gene Transfer in the Endornavirus Genus

The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains pres...

متن کامل

Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event

The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly p...

متن کامل

Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?

The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...

متن کامل

Interkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota

Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene trans...

متن کامل

Molecular Evolution of Threonine Dehydratase in Bacteria

Threonine dehydratase converts L-threonine to 2-ketobutyrate. Several threonine dehydratases exist in bacteria, but their origins and evolutionary pathway are unknown. Here we analyzed all the available threonine dehydratases in bacteria and proposed an evolutionary pathway leading to the genes encoding three different threonine dehydratases CTD, BTD1 and BTD2. The ancestral threonine dehydrata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2014